Energy Modeling of a Botanical Air Filter
نویسندگان
چکیده
According to the U.S. EPA Americans spend 90 percent of their time indoors where indoor air is two to five times more polluted than outdoor air. Toxins in the built environment have been found to cause adverse physical and mental health effects on occupants and are estimated to cost the U.S. 125 billion dollar annually in lost productivity. To address this challenge a novel botanical air filter was developed for improving indoor air quality in buildings. The “Biowall” is envisioned as an integral part of the heating and cooling system for a home or small commercial building; where it will remove airborne contaminants by leveraging the natural ability of plants to metabolize harmful volatile organic compounds. This research evaluated a prototype Biowall in an environmental chamber where temperature, relative humidity and toxin levels were precisely monitored. A known amount of contaminant was introduced into the chamber and then its decay was monitored both with and without the botanical air filter. The results showed that the Biowall reduced VOC levels by 60% without having an adverse effect on the relative humidity of the occupied space. This data was used to develop and calibrate a thermodynamic model of the Biowall. Long term, this research could lead to the development of performance based standards for indoor air quality that save energy by reducing the amount of outdoor ventilation air used for maintaining high levels of indoor air quality.
منابع مشابه
Energy Modeling and Simulation including particle technologies within Single and Double Pass Solar Air Heaters
In order to obtain the best performance of the solar air heaters, it is necessary to find optimum performance conditions. The aim of this research paper is to achieve optimum conditions, by comparing single and double pass solar air heaters. Also, a brief review study of various related research works of all scenarios for a single and double pass and packed bed (including particle technologies)...
متن کاملAir Cleaning Performance of a Biowall for Residential Applications
An active botanical air filtration system, called the Biowall, is used to improve indoor air quality (IAQ) and provide the potential for energy savings in residential buildings by reducing the need for air conditioning. The Biowall is an integral part of the HVAC system to actively filter the return air from Volatile Organic Compounds (VOCs). The Biowall was recently evaluated in an environment...
متن کاملNumerical Modeling and Simulation of Highly Preheated and Diluted Air Combustion Furnaces
This paper presents some of the results of the modeling and simulation of an industrial furnace under the conventional combustion as well as under the highly preheated and diluted air combustion (HPDAC) conditions. The results are obtained using a computer program written by authors in FORTRAN language. It was found that, the HPDAC offers a more uniform and relatively moderate gas temperature p...
متن کاملKinetic Modeling of Mass Transfer During Roasting of Soybeans Using Combined Infrared-Hot Air Heating
ABSTRACT: Roasting is one of the widespread methods for processing of nuts and beans that significantly enhances the flavor, color, texture and appearance of the products. In this research the kinetics and modeling of soybean roasting using combined infrared-hot air system and consumption of energy were investigated. The effect of the hot air temperature (160, 180 and 200 ºC), infrared powers (...
متن کاملThermal Modeling for Predication of Automobile Cabin Air Temperature
Thermal modeling of an automotive cabin was performed in this paper to predict the inside cabin air temperature. To implement this task, thermal and ventilation loads were estimated and the mass and energy balance conservation equations for dry air and water vapor with considering a new parameter (air circulation ratio) as well as the balance equations of internal components of a cabin were de...
متن کامل